Python (langage)_Initiation

L'ingénieur #Galoi_Mortanie, en train de coder en JavaScript dans le centre Informatique Zam_Zam

 Un petit pas dans le Langage #Python 

            Python (/ˈpaɪ.θɑn/5) est un langage de programmation interprété, multi-paradigme et multiplateformes. Il favorise la programmation impérative structurée, fonctionnelle et orientée objet. Il est doté d'un typage dynamique fort, d'une gestion automatique de la mémoire par ramasse-miettes et d'un système de gestion d'exceptions ; il est ainsi similaire à Perl, Ruby, Scheme, Smalltalk et Tcl. Le langage Python est placé sous une licence libre proche de la licence BSD6 et fonctionne sur la plupart des plates-formes informatiques, des smartphones aux ordinateurs centraux7, de Windows à Unix avec notamment GNU/Linux en passant par macOS, ou encore Android, iOS, et peut aussi être traduit en Java ou .NET. Il est conçu pour optimiser la productivité des programmeurs en offrant des outils de haut niveau et une syntaxe simple à utiliser. Il est également apprécié par certains pédagogues qui y trouvent un langage où la syntaxe, clairement séparée des mécanismes de bas niveau, permet une initiation aisée aux concepts de base de la programmation8. 

Utilisation

Python est un langage qui peut s'utiliser dans de nombreux contextes et s'adapter à tout type d'utilisation grâce à des bibliothèques spécialisées. Il est cependant particulièrement utilisé comme langage de script pour automatiser des tâches simples mais fastidieuses, comme un script qui récupérerait la météo sur Internet ou qui s'intégrerait dans un logiciel de conception assistée par ordinateur afin d'automatiser certains enchaînements d'actions répétitives (voir la section Adoption). On l'utilise également comme langage de développement de prototype lorsqu'on a besoin d'une application fonctionnelle avant de l'optimiser avec un langage de plus bas niveau. Il est particulièrement répandu dans le monde scientifique, et possède de nombreuses bibliothèques optimisées destinées au calcul numérique.

Historique

Au CWI

Guido van Rossum,   créateur de Python, à la OSCON 2006.
À la fin des années 1980, le programmeur Guido van Rossum, participe au développement du langage de programmation ABC au Centrum voor Wiskunde en Informatica (CWI) d'Amsterdam, aux Pays-Bas. Il travaillait alors dans l’équipe du système d’exploitation Amoeba dont les appels systèmes étaient difficilement interfaçables avec le Bourne shell utilisé comme interface utilisateur. Il estime alors qu’un langage de script inspiré d’ABC pourrait être intéressant comme interpréteur de commandes pour Amoeba9.
En 1989, profitant d’une semaine de vacances durant les fêtes de Noël, il utilise son ordinateur personnel10 pour écrire la première version du langage. Fan de la série télévisée Monty Python's Flying Circus, il décide de baptiser ce projet Python11. Il s’est principalement inspiré d’ABC, par exemple pour l’indentation comme syntaxe ou les types de haut niveau mais aussi de Modula-3 pour la gestion des exceptions, du langage C et des outils UNIX12.
Durant l’année suivante, le langage commence à être adopté par l’équipe du projet Amoeba, Guido poursuivant son développement principalement pendant son temps libre. En , la première version publique, numérotée 0.9.013, est postée sur le forum Usenet alt.sources. La dernière version sortie au CWI fut Python 1.2.

Au CNRI

En 1995, Van Rossum continua son travail sur Python au CNRI (en) à Reston, aux États-Unis, où il sortit plusieurs versions du logiciel.
À partir d', l'équipe Python travaille au CNRI sur Grail14 un navigateur web utilisant Tk. Il est l'équivalent pour Python du navigateur HotJava, permettant d'exécuter des applets dans un environnement sécurisé. La première version publique, disponible en novembre, est la 0.215. Il a entraîné le développement de modules pour la bibliothèque standard comme rexec16, htmllib ou urllib17. La version 0.6 sera la dernière de Grail ; elle est publiée en 18.
En 1999, le projet Computer Programming for Everybody (CP4E) est lancé avec collaboration entre le CNRI et la DARPA. Il s'agit d'utiliser Python comme langage d'enseignement de la programmation. Cette initiative conduira à la création de l'environnement de développement IDLE. Cependant, du fait du manque de financement du projet par la DARPA, et du départ de nombreux développeurs Python du CNRI (dont Guido van Rossum), le projet s’éteint en 200019. Python 1.6 fut la dernière version sortie au CNRI.

À BeOpen

En 2000, l'équipe principale de développement de Python déménagea à BeOpen.com pour former l'équipe PythonLabs de BeOpen. Python 2.0 fut la seule version sortie à BeOpen.com. Après cette version, Guido Van Rossum et les autres développeurs de PythonLabs rejoignirent Digital Creations (à présent connue sous le nom de Zope Corporation)20.
Andrew M. Kuchling a publié en 21 un texte nommé Python Warts22 qui synthétise les griefs les plus fréquents exprimés à l'encontre du langage. Ce document aura une influence certaine sur les développements futurs du langage23.

La Python Software Foundation

Python 2.1 fut une version dérivée de Python 1.6.1, ainsi que de Python 2.0. Sa licence fut renommée Python Software Foundation License. Tout code, documentation et spécification ajouté, depuis la sortie de Python 2.1 alpha, est détenu par la Python Software Foundation (PSF), une association sans but lucratif fondée en 2001, modelée d'après l'Apache Software Foundation.
Afin de réparer certains défauts du langage (par exemple l'orienté objet avec deux types de classes), et pour nettoyer la bibliothèque standard de ses éléments obsolètes et redondants, Python a choisi de casser la compatibilité ascendante dans la nouvelle version majeure, Python 3.0, publié en . Cette version a été suivie rapidement par une version 3.1 qui corrige les erreurs de jeunesse de la version 3.0.

Caractéristiques

Syntaxe

Python a été conçu pour être un langage lisible. Il vise à être visuellement épuré. Par exemple, il possède moins de constructions syntaxiques que de nombreux langages structurés tels que C, Perl, ou Pascal. Les commentaires sont indiqués par le caractère croisillon (#).
Les blocs sont identifiés par l'indentation, au lieu d'accolades comme en C ou C++ ; ou de begin ... end comme en Pascal ou Ruby. Une augmentation de l'indentation marque le début d'un bloc, et une réduction de l'indentation marque la fin du bloc courant. Par convention (actuellement PEP8), l'indentation est habituellement de quatre espaces en Python24.

Essai d'une petite algorithme de factorielle
 NB : l'indentation pourrait être modifiée ou supprimée dans la version en C sans modifier son comportement. De même la fonction Python peut être écrite avec une expression conditionnelle25. Cependant, une indentation correcte permet de détecter plus aisément des erreurs en cas d'imbrication de plusieurs blocs et facilite donc l'élimination de ces erreurs. C'est pourquoi il est préférable d'indenter convenablement les programmes en C. La version courte s'écrirait ainsi :


Mots-clés du langage

Les mots-clés sont fournis dans la liste keyword.kwlist du module keyword26. Les mots-clés de Python 2.7.5 sont les suivants : and, as, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while, with, yield.
À partir de Python 3.0, print et exec ne sont plus des mots-clés du langage, mais des fonctions du module builtins27. Sont ajoutés aux mots-clés : True, False, None et nonlocal. Les trois premiers étaient déjà présents dans les versions précédentes, mais ils ne sont plus modifiables (auparavant, l'affectation True = 1 était possible)28. nonlocal a été introduit par le PEP 310429, et permet, dans une fonction définie à l'intérieur d'une autre fonction, de modifier une variable d'un niveau supérieur de portée. Avant cela, seules les variables locales à la fonction, et globales (niveau module) étaient modifiables. Toutefois, il était possible, et ça l'est toujours sans le mot-clé nonlocal, de modifier un objet affecté à une variable d'un niveau de portée supérieur, par exemple une liste avec la méthode append - c'est évidemment impossible pour un objet immuable.

Types de base

Les types de base en Python sont relativement complets et puissants. Il y a, entre autres :
  • Les objets numériques
    • int est un entier. Avant la version 3.0, ce type était dénommé long, et le type int correspondait à un entier de 32 ou 64 bits. Néanmoins, une conversion automatique en type long évitait tout débordement. Maintenant, ce type correspond à un entier avec une précision illimitée sans restriction de taille.
    • long est un entier illimité de plus de 32 bits en Python 2, remplacé par le type int en Python 3
    • float est un flottant équivalent au type double du C, soit un nombre entre −1,7×10308 et 1,7×10308 sur les plateformes en conformité avec l'IEEE 754.
    • complex est une approximation d'un nombre complexe (typiquement deux float).
  • Les objets « itérables »
    • Les objets tuple (n-uplet) sont des listes immuables d'objets hétérogènes.
    • Les objets list sont des tableaux dynamiques (ils étendent automatiquement leur taille lorsque nécessaire) et acceptent des types de données hétérogènes.
    • Les objets set sont des ensembles non ordonnés d'objets.
    • Les objets frozenset forment une variante immuable des set.
    • Les objets dict sont des tableaux associatifs (ou dictionnaires) permettant d'associer un objet (une clef) à un autre.
    • Les objets str sont des chaînes de caractères. À partir de la version 3.0, les caractères sont en Unicode sur 16 ou 32 bits ; les chaines d'octets sont des objets bytes30. Dans les versions précédentes, ces objets étaient respectivement de type unicode et str. Les objets str et bytes sont immuables.
    • Les objets bytearray sont des chaînes d'octets modifiables. La version d'Unicode employée par Python peut être déterminée à l'aide de la variable unidata_version du module unicodedata.
    • Les objets file correspond à un fichier obtenu grâce à la méthode open()
    • Il existe aussi d'autres types d'objets itérables, notamment range obtenu via la méthode range(), et les types liés aux méthodes de dictionnaires .keys(), .values() et .items(). La plupart d'entre eux sont immuables.
    • Les autres objets, n'étant ni numériques ni itérables
      • None est simplement le type d'un "vide". Il sert à dénoter qu'une variable est vide.
      • type est le type du type des objets, obtenu grâce à la méthode type().
      • object est le type basique dont tous les autres types "héritent"
      • slice est une partie de type ou un objet extensible
      • NotImplementedType est, comme son nom l'indique, une absence d'implémentation du type auquel on essaie d'accéder.
      • bool est un booléen, soit le type de True et False renvoyés par exemple lors de comparaisons or de l'utilisation de méthodes is_x().
      • exception est le type d'un message d'erreur lancé lorsque le code lève une exception.
      • function est le type d'une fonction, utilisé lors de l'appel des mots-clef def et lambda.
      • module est le type d'un module, utilisé lors de l'appel des mots-clef import et from.
    Les objets itérables sont parcourus à l'aide d'une boucle for de la manière suivante :
    Pour une chaîne de caractères, l'itération procède caractère par caractère.
    Il est possible de dériver les classes des types de base pour créer ses propres types. On peut également fabriquer ses propres types d'objets itérables sans hériter des itérables de base en utilisant le protocole d'itération du langage.

    Programmation fonctionnelle

    Python permet de programmer dans un style fonctionnel. Il dispose également des compréhensions de listes, et plus généralement les compréhensions peuvent produire des générateurs, des dictionnaires ou des ensembles31. Par exemple, pour construire la liste des carrés des entiers naturels plus petits que 10, on peut utiliser l'expression : 
 Une compréhension peut comprendre plusieurs boucles et filtres, et il existe une correspondance avec le code réalisant le même calcul à l'aide d'instructions for et if :


 Les lambdas de Python n'admettent que des expressions et ne peuvent être utilisées comme fonctions anonymes généralisées ; mais en Python, toutes les fonctions sont des objets, elles peuvent donc être passées en arguments à d'autres fonctions, et appelées lorsque c'est nécessaire. En effet, une fonction définie avec def peut être créée à l'intérieur d'une autre fonction et on obtient ainsi une définition de fonction dans une variable locale, par exemple : 

On peut ainsi créer plusieurs accumulateurs, faisant chacun référence à son propre total. Il est possible d'accéder à l'environnement d'une fonction locale à l'aide de l'attribut __closure__.

Programmation objet

Tous les types de base, les fonctions, les instances de classes (les objets « classiques » des langages C++ et Java) et les classes elles-mêmes (qui sont des instances de méta-classes) sont des objets.
Une classe se définit avec le mot-clé class. Les classes Python supportent l'héritage multiple ; il n'y a pas de surcharge statique comme en C++, ou de restrictions sur l'héritage comme c'est le cas en Java (une classe implémente plusieurs interfaces et hérite d'une seule classe) mais le mécanisme des arguments optionnels et par mot-clé est plus général et plus flexible. En Python, l'attribut d'un objet peut référencer une variable d'instance ou de classe (le plus souvent une méthode). Il est possible de lire ou de modifier un attribut dynamiquement avec les fonctions :

        self.prenom = prenom
    def presenter(self):
        return self.nom + " " + self.prenom

class Etudiant(Personne):
    def __init__(self, niveau, nom, prenom):
        Personne.__init__(self, nom, prenom)
        self.niveau = niveau
    def presenter(self):
        return self.niveau + " " + Personne.presenter(self)

e = Etudiant("Licence INFO", "Dupontel", "Albert")
assert e.nom == "Dupontel"

Méthodes spéciales et définition des opérateurs

Python fournit un mécanisme élégant et orienté objet pour définir un ensemble pré-défini d'opérateurs : tout objet Python peut se voir doté de méthodes dites spéciales.
Ces méthodes, commençant et finissant par deux tirets de soulignement (underscores), sont appelées lors de l'utilisation d'un opérateur sur l'objet : + (méthode __add__), += (méthode __iadd__), [] (méthode __getitem__), () (méthode __call__), etc. Des méthodes comme __repr__ et __str__ permettent de définir la représentation d'un objet dans l'interpréteur interactif et son rendu avec la fonction print.
Les possibilités sont nombreuses et sont décrites dans la documentation du langage32.
Par exemple on peut définir l'addition de deux vecteurs à deux dimensions avec la classe suivante :


Générateurs

Le mot-clef yield utilisé dans une fonction permet de faire de cette fonction un générateur. L'appel de cette fonction renvoie un objet de type generator, qui peut être utilisé dans une boucle for, par exemple.
À chaque appel, le générateur effectue son traitement jusqu'à rencontrer le mot-clé yield, renvoie la valeur de l'expression yield, et à l'appel suivant, reprend son déroulement juste après le yield. Par exemple pour calculer la suite de Fibonacci, on peut écrire :

Depuis Python 3.3, il est possible de produire un générateur à partir d'une fonction récursive, grâce à la syntaxe yield from, apparue dans le PEP 38033 et qui « délègue » le calcul à un sous-générateur. L'exemple suivant calcule les permutations des dames correspondant aux solutions du problème des huit dames étendu à un échiquier de taille n × n. 

Un générateur peut sembler identique à une fonction qui retourne une liste, mais contrairement à une liste qui contient tous ses éléments, un générateur calcule ses éléments un par un.
Ainsi, le test 36 in [n * n for n in range(10)] va s'effectuer sur la liste calculée en entier, alors que dans 36 in (n * n for n in range(10)), qui utilise un générateur, le calcul des carrés s'arrête dès que 36 est trouvé. On peut s'en convaincre en remplaçant n * n par un appel de fonction réalisant un effet de bord, par exemple un affichage à l'écran.

Réflexivité

Grâce à un usage intensif des dictionnaires (conteneur associatif développé avec des tables de hachage), Python permet d'explorer les divers objets du langage (introspection) et dans certains cas de les modifier (intercession).

Typage

Python 3. The standard type hierarchy.png
Le typage n'est pas vérifié à la compilation. Python utilise le duck typing : lors de l’exécution, si une méthode invoquée sur un objet a la même signature qu'une méthode déclarée sur cet objet, alors c'est cette dernière méthode qui est exécutée. De ce fait, invoquer une méthode qui n'existe pas sur un objet va échouer, signifiant que l'objet en question n'est pas du bon type. Malgré l'absence de typage statique, Python est fortement typé, interdisant des opérations ayant peu de sens (par exemple, additionner un nombre à une chaîne de caractères) au lieu de tenter silencieusement de la convertir en une forme qui a du sens. Python propose des fonctions permettant de transformer les variables dans un autre type :  

Python propose aussi un mécanisme de typage statique pour les attributs des classes grâce à l'API trait34 ou au patron de conception decorators.

Annotations

Depuis la version 3.0, Python propose l'annotation des variables dans les fonctions (introduit dans la PEP 310735). Ce qui permet de rendre le code plus lisible sans pour autant faire office de solution de typage statique puisque rien n'oblige à suivre ces annotations36.


Compilation

Il est possible d'effectuer une analyse statique des modules Python avec des outils comme Pylint 39, mypy 40, ou PyChecker. Sans nécessiter une exécution, ces outils repèrent des fautes ou des constructions déconseillées. Par exemple, une classe qui hérite d'une classe abstraite et qui ne redéfinit pas les méthodes abstraites, ou bien des variables utilisées avant d'être déclarées, ou encore des attributs d'instance déclarés en dehors de la méthode __init__.
Il est aussi possible de générer un code intermédiaire (bytecode) Python.
Des outils comme PyInstaller41 ou d'autres plus spécifiques comme cx_Freeze sous Unix, Windows et macOS, py2app42 sous macOS et py2exe sous Windows permettent de « compiler » un programme Python sous forme d'un exécutable comprenant le programme et un interpréteur Python.
Le programme ne tourne pas plus rapidement (il n'est pas compilé sous forme de code machine) mais cela simplifie largement sa distribution, notamment sur des machines où l'interpréteur Python n'est pas installé.

Modèle objet

En Python, tout est objet, dans le sens qu'une variable peut contenir une référence vers tous les éléments manipulés par le langage : nombres, méthodes, modules, etc.43. Néanmoins, avant la version 2.2, les classes et les instances de classes étaient un type d'objet particulier, ce qui signifiait qu'il était par exemple impossible de dériver sa propre sous-classe de l'objet list.

Méthodes

Le modèle objet de Python est inspiré de celui de Modula-344. Parmi ces emprunts se trouve l'obligation de déclarer l'instance de l'objet courant, conventionnellement nommée self, comme premier argument des méthodes, et à chaque fois que l'on souhaite accéder à une donnée de cette instance dans le corps de cette méthode. Cette pratique n'est pas naturelle pour des programmeurs venant par exemple de C++ ou Java, la profusion des self étant souvent critiquée comme étant une pollution visuelle qui gêne la lecture du code. Les promoteurs du self explicite estiment au contraire qu'il évite le recours à des conventions de nommage pour les données membres et qu'il simplifie des tâches comme l'appel à une méthode de la superclasse ou la résolution d'homonymie entre données membres45.
Python reconnaît trois types de méthodes :
  • les méthodes d'instance, qui sont celles définies par défaut. Elles reçoivent comme premier argument une instance de la classe où elles ont été définies.
  • les méthodes de classe, qui reçoivent comme premier argument la classe où elles ont été définies. Elles peuvent être appelées depuis une instance ou directement depuis la classe. Elles permettent de définir des constructeurs alternatifs comme la méthode fromkeys() de l'objet dict. Elles sont déclarées avec le décorateur @classmethod.
  • les méthodes statiques, qui ne reçoivent pas de premier argument implicite. Elles sont similaires aux méthodes statiques que l'on trouve en Java ou C++. Elles sont déclarées avec le décorateur @staticmethod.

Visibilité

Le langage a un support très limité de l'encapsulation. Il n'y a pas, comme en Java par exemple, de contrôle de l'accessibilité par des mots clefs comme protected ou private.
La philosophie de Python est de différencier conceptuellement l'encapsulation du masquage d'information. Le masquage d'information vise à prévenir les utilisations frauduleuses, c'est une préoccupation de sécurité informatique. Le module bastion de la bibliothèque standard, qui n'est plus maintenu dans les dernières versions du langage, permettait ainsi de contrôler l'accès aux attributs d'un objet dans le cadre d'un environnement d'exécution restreint.
L'encapsulation est une problématique de développement logiciel. Le slogan des développeurs Python est we're all consenting adults here46 (nous sommes entre adultes consentants). Ils estiment en effet qu'il suffit d'indiquer, par des conventions d'écriture, les parties publiques des interfaces et que c'est aux utilisateurs des objets de se conformer à ces conventions ou de prendre leurs responsabilités. L'usage est de préfixer par un underscore les membres privés. Le langage permet par ailleurs d'utiliser un double underscore pour éviter les collisions de noms, en préfixant automatiquement le nom de la donnée par celui de la classe où elle est définie.
L'utilisation de la fonction property() permet de définir des propriétés qui ont pour but d'intercepter, à l'aide de méthodes, les accès à une donnée membre. Cela rend inutile la définition systématique d'accesseurs et le masquage des données comme il est courant de le faire en C++ par exemple.

Héritage

Python supporte l'héritage multiple. Depuis la version 2.3, il utilise l'algorithme C3 (en), issu du langage Dylan47, pour résoudre l'ordre de résolution de méthode (MRO). Les versions précédentes utilisaient un algorithme de parcours en profondeur qui posait des problèmes dans le cas d'un héritage en diamant48.

Bibliothèque standard

Python est fourni « piles incluses ».
Python possède une grande bibliothèque standard, fournissant des outils convenant à de nombreuses tâches diverses. Le nombre de modules de la bibliothèque standard peut être augmenté avec des modules spécifiques écrits en C ou en Python.
La bibliothèque standard est particulièrement bien conçue pour écrire des applications utilisant Internet, avec un grand nombre de formats et de protocoles standards gérés (tels que MIME et HTTP). Des modules pour créer des interfaces graphiques et manipuler des expressions rationnelles sont également fournis. Python inclut également un framework de tests unitaires (unittest, anciennement PyUnit avant version 2.1) pour créer des suites de tests exhaustives.

Conventions de style

Bien que chaque programmeur puisse adopter ses propres conventions pour l'écriture de code Python, Guido van Rossum a mis un guide à disposition, référencé comme « PEP 8 »24. Publié en 2001, il est toujours maintenu pour l'adapter aux évolutions du langage. Google propose également un guide49.

Interfaces graphiques

Python possède plusieurs modules disponibles pour la création de logiciels avec une interface graphique. Le plus répandu est Tkinter. Ce module convient à beaucoup d'applications et peut être considéré comme suffisant dans la plupart des cas. Néanmoins, d'autres modules ont été créés pour pouvoir lier Python à d'autres bibliothèques logicielles (« toolkit »), pour davantage de fonctionnalités, pour une meilleure intégration avec le système d'exploitation utilisé, ou simplement pour pouvoir utiliser Python avec sa bibliothèque préférée. En effet, certains programmeurs trouvent l'utilisation de Tkinter plus pénible que d'autres bibliothèques. Ces autres modules ne font pas partie de la bibliothèque standard et doivent donc être obtenus séparément.
Les principaux modules donnant accès aux bibliothèques d'interface graphique sont Tkinter et Pmw (Python megawidgets)50 pour Tk, wxPython pour wxWidgets, PyGTK pour GTK+, PyQt et PySide pour Qt, et enfin FxPy pour le FOX Toolkit. Il existe aussi une adaptation de la bibliothèque SDL : Pygame, un binding de la SFML : PySFML, ainsi qu'une bibliothèque écrite spécialement pour Python : Pyglet (en).
Il est aussi possible de créer des applications Silverlight en Python sur la plateforme IronPython.

La communauté Python

Guido van Rossum est le principal auteur de Python, et son rôle de décideur central permanent de Python est reconnu avec humour par le titre de « Dictateur bienveillant à vie » (Benevolent Dictator for Life, BDFL).
Il est assisté d'une équipe de core developers qui ont un accès en écriture au dépôt de CPython et qui se coordonnent sur la liste de diffusion python-dev. Ils travaillent principalement sur le langage et la bibliothèque de base. Ils reçoivent ponctuellement les contributions d'autres développeurs Python via la plateforme de gestion de bug Roundup, qui a remplacé SourceForge.
Les utilisateurs ou développeurs de bibliothèques tierces utilisent diverses autres ressources. Le principal média généraliste autour de Python est le forum Usenet anglophone comp.lang.python.
Les allusions aux Monty Python sont assez fréquentes. Les didacticiels consacrés à Python utilisent souvent les mots spam et eggs comme variable métasyntaxique. Il s'agit d'une référence au sketch Spam des Monty Python, où deux clients tentent de commander un repas à l'aide d'une carte qui contient du jambon en conserve de marque SPAM dans pratiquement tous les plats. Ce sketch a été aussi pris pour référence pour désigner un courriel non sollicité.

Adoption de Python

Plusieurs entreprises ou organismes mentionnent sur leur site officiel51 qu'ils utilisent Python :
Python est aussi le langage de commande d'un grand nombre de logiciels libres :
Et commerciaux :
Python est utilisé comme langage de programmation dans l'enseignement secondaire et supérieur, notamment en France54. Depuis 2013, il y est enseigné, en même temps que Scilab, à tous les étudiants de classes préparatoires scientifiques dans le cadre du tronc commun (informatique pour tous). Auparavant, l'enseignement d'informatique était limité à une option en MP, l'enseignement se faisant en langage Caml ou Pascal. Cette option existe toujours, mais Pascal a été abandonné à partir de la session 2015 des concours, ne reste donc que Caml dans cet enseignement. Les premières épreuves de concours portant sur le langage Python sont également celles de la session 201555,56.

Implémentations du langage

Outre la version de référence, nommée CPython (car écrite en langage C), il existe d'autres systèmes mettant en œuvre le langage Python57 :
Ces autres versions ne bénéficient pas forcément de la totalité de la bibliothèque de fonctions écrites en C pour la version de référence, ni des dernières évolutions du langage.

Distributions de Python

Différentes distributions sont disponibles, qui incluent parfois beaucoup de paquets dédiés à un domaine donné61 :
  • ActivePython62 : disponible en version gratuite (ne pouvant être « utilisée en production ») ou commerciale.
  • Python(x,y)63 : distribution Python à l'usage des scientifiques basée sur Qt et Eclipse. Obsolète, remplacé par WinPython
  • Enthought Canopy64 : distribution à usage scientifique, disponible en version gratuite (Canopy Express) ou commerciale.
  • Anaconda65 : distribution à usage scientifique, disponible en version gratuite ou commerciale.
  • Intel Distribution for Python66 : distribution basée sur Anaconda, intégrant notamment la bibliothèque MKL (en) d'Intel afin d'accélérer les calculs numériques de bibliothèques telles que NumPy et SciPy, intégrées à la distribution. Elle est disponible gratuitement seule, ou bien intégrée à Intel Parallel Studio, qui nécessite une licence payante.
  • Pyzo67 : « Python to the people », destinée à être facile d'utilisation.
  • WinPython68: distribution à usage scientifique avec Spyder, QT, etc....
Ce ne sont pas des implémentations différentes du langage Python : elles sont basées sur CPython, mais sont livrées avec un certain nombre de bibliothèques préinstallées.

Historique des versions








Développement

Les PEP

Les propositions d'amélioration de Python (ou PEP : Python Enhancement Proposal) sont des documents textuels qui ont pour objet d'être la voie d'amélioration de Python et de précéder toutes ses modifications88. Un PEP est une proposition d'orientation pour le développement (process PEP), une proposition technique (Standard Track PEP) ou une simple recommandation (Informational PEP).

Python 3

En 2019, c'est la version 3 de Python, qui remplace de plus en plus la version 2 (le projet était au départ appelé « Python 3000 » ou « Py3K »), sans compatibilité descendante avec la série des versions 2.x, dans le but d'éliminer les faiblesses du langage. La ligne de conduite du projet était de « réduire la redondance de Python par la suppression de méthodes obsolètes ». Python 3.0a1, la première version alpha, avait été publiée le 89, et il existe un PEP90 qui détaille les changements prévus, ainsi qu'une page pour orienter les programmeurs dans leur choix de Python 2 ou 391.
Les calculatrices destinées aux lycéens (dont Casio, NumWorks, Texas Instruments...) et supportant Python92 fonctionnent en Python 3. Ces calculatrices peuvent échanger des programmes avec des ordinateurs domestiques.

Philosophie

Python 3 a été développé avec la même philosophie que dans ses versions antérieures, donc toute référence à la philosophie de Python s'appliquera aussi bien à la version 3. Cependant, le langage avait fini par accumuler nombre de méthodes redondantes. En recherchant à supprimer ce qui est redondant dans le langage et ses modules, Python 3 suit la ligne directrice de Python « Ne devrait subsister qu'une seule méthode à la fois optimale et naturelle pour chaque chose ».
Python 3 reste un langage multi-paradigme. Les programmeurs auront encore le choix entre l'orientation objet, la programmation structurée, la programmation fonctionnelle et d'autres paradigmes ; Python 3 a pour but d'être utilisé de manière plus naturelle que dans les versions 2.x, bien que son print nécessite l'emploi de parenthèses contrairement à Python 2.

Planning et compatibilité

Python 3.0a1, la première version alpha de Python 3.0, fut publiée le . Les versions 2.x et 3.x de Python seront publiées en parallèle pendant plusieurs cycles de développement, pendant lesquels la série des 2.x subsistera principalement pour la compatibilité, en incluant quelques caractéristiques importées depuis Python 3.x. Le PEP 300093 contient plus d'informations à propos du processus de publication d'une version.
Comme Perl 6, Python 3.0 rompt la compatibilité descendante (rétro-compatibilité). L'utilisation de code écrit pour les séries 2.x n'est pas garantie avec Python 3.0. Ce dernier apporte des changements fondamentaux, comme le passage complet à l'Unicode et pour cette raison une nécessaire distinction entre les chaînes de caractère et les objets « bytes ». Le typage dynamique associé à certaines méthodes sur les objets de type dictionnaire rend une transition parfaite de Python 2.x vers Python 3.0 très délicat. Un outil nommé « 2to3 » traduit le plus gros des versions 2.x vers les versions 3.x et indique les zones de code demandant des finitions par des commentaires spéciaux et des mises en garde. Dans sa pré-version, 2to3 semble réussir franchement à réaliser une traduction correcte94. Dans le cadre d'une migration de Python 2.x vers Python 3.x, le PEP 3000 recommande de conserver le code original comme base des modifications et de le traduire pour la plateforme 3.x en utilisant 2to3.
Python 2.6 fournit un début de compatibilité ascendante, aussi bien qu'un mode « mise en garde » qui devrait faire prendre conscience des problèmes potentiels de transition pour le passage à Python 395.

Python pour smartphones

Il existe des versions de Python adaptées pour Android et iPhone en version 2.5 ou 2.6. Disponible en Jailbreak d'iOS sur iOS grâce à "setup tools", et sur Android grâce à SL4A qui donne même une possibilité de faire des petites interfaces graphiques grâce au module "android" et qui permet d'envoyer des SMS, d'allumer la caméra96, ou encore de faire vibrer le téléphone. Les quelques lignes suivantes montrent comment faire ça :


 Un portage de Python sur les terminaux Blackberry est sorti en , pour le système BlackBerry OS 1097. Une version allégée est sortie en , appelée « BlackBerry-Tart »98,99, en raison d'un jeu de mots en anglais : « a "tart" is lighter-weight than a "pie" », en référence à la traditionnelle « apple pie ». Elle est basée sur Python 3.2.2.

 Notes et Références (Voir annotations)


 

Merci pour la visite
Par Ir. Galoi_Mortanie


















Commentaires

  1. Vraiment c'est Coool Mon Ingénieur
    Comment on peut faire pour qu'on débute la formation avec vous? (Langage #PHP)

    Je vous attend Kaka

    RépondreSupprimer

Enregistrer un commentaire

Posts les plus consultés de ce blog

Quels sont les meilleurs langages de programmation à apprendre en 2020 ?

INITIATION SUR L'INTELLIGENCE ARTIFICIELLE AVEC OpenAI Chat-GPT

Ce que vous devez savoir sur l’utilisation d’un VPN